Boundary Homogenization and Reduction of Dimension in a Kirchhoff-Love Plate
نویسندگان
چکیده
We investigate the asymptotic behavior, as ε tends to 0+, of the transverse displacement of a Kirchhoff-Love plate composed of two domains Ωε ∪ Ω − ε , contained in the (x1, x2)-coordinate plane and depending on ε in the following way. The first domain Ωε is a thin strip with vanishing height hε (in direction x2), as ε tends to 0+. The second one Ωε is a comb with fine teeth, having small cross section εω and constant height, ε-periodically distributed (in direction x1) on the upper side of the thin strip (see Figure 1). The structure is assumed clamped on the top of the teeth, with a free boundary elsewhere, and subjected to a transverse load. As ε tends to 0+, we obtain a ”continuum” bending model of rods in the limit domain of the comb, while the limit displacement is independent of x2 in the rescaled (with respect to hε) strip. We show that the displacement in the strip is equal to the displacement on the base of the teeth, if hε ≫ ε 4. While, if the strip is thin enough (i.e. hε ≃ ε 4), we show that microscopic oscillations of the displacement in the strip, between the basis of the teeth, may produce a limit average field different from that on the base of the teeth, i.e. a discontinuity in the transmission condition may appear in the limit model. Résumé Cet article concerne le comportement asymptotique de la flexion d’une structure bidimensionnelle élastique Ωε ∪Ω − ε (contenue dans le plan (x1, x2) et sous l’hypothèse de Kirchhoff-Love) dont la géométrie dépend d’un petit paramètre ε de la façon suivante (voir la Figure 1). Le domaine Ωε est une bande d’épaisseur hε (dans la direction x2) qui tend vers 0 avec ε. Le second domaine Ωε est consitué d’un ensemble de créneaux bidimensionnels ε-périodiquement répartis dans la direction x1 et de hauteur constante dans la direction x2. La structure est encastrée aux sommets des créneaux, libre sur le reste de la frontière et elle est soumise à un champ de forces transverses. A la limite nous obtenons un ”continuum” de modèles de poutres en flexion dans le domaine rempli asymptotiquement par les créneaux et un déplacement constant en x2 dans la bande (mise à l’échelle par rapport à hε). Nous démontrons que si hε ≫ ε 4, le déplacement dans la bande est égal à celui de la base des créneaux. Par contre, si l’épaisseur de la bande est de l’ordre de ε4, des oscillations microscopiques du déplacement dans la bande entre les bases des créneaux induisent une discontinuité dans la condition de transmission du déplacement pour le modèle limite.
منابع مشابه
Thermoelastic Damping and Frequency Shift in Kirchhoff Plate Resonators Based on Modified Couple Stress Theory With Dual-Phase-Lag Model
The present investigation deals with study of thermoelastic damping and frequency shift of Kirchhoff plate resonators by using generalized thermoelasticity theory of dual-phase-lag model. The basic equations of motion and heat conduction equation are written with the help of Kirchhoff-Love plate theory and dual phase lag model. The analytical expressions for thermoelastic damping and frequency ...
متن کاملDamping and Frequency Shift in Microscale Modified Couple Stress Thermoelastic Plate Resonators
In this paper, the vibrations of thin plate in modified couple stress thermoelastic medium by using Kirchhoff- Love plate theory has been investigated. The governing equations of motion and heat conduction equation for Lord Shulman (L-S) [1] theory are written with the help of Kirchhoff- Love plate theory. The thermoelastic damping of micro-beam resonators is analyzed by using the normal mode a...
متن کاملIn any dimension a “ clamped plate ” with a uniform weight may change sign ∗
Positivity preserving properties have been conjectured for the bilaplace Dirichlet problem in many versions. In this note we show that in any dimension there exist bounded smooth domains Ω such that even the solution of ∆u = 1 in Ω with the homogeneous Dirichlet boundary conditions u = uν = 0 on ∂Ω is sign-changing. In two dimensions this corresponds to the Kirchhoff-Love model of a clamped pla...
متن کاملMagnetic Stability of Functionally Graded Soft Ferromagnetic Porous Rectangular Plate
This study presents critical buckling of functionally graded soft ferromagnetic porous (FGFP) rectangular plates, under magnetic field with simply supported boundary condition. Equilibrium and stability equations of a porous rectangular plate in transverse magnetic field are derived. The geometrical nonlinearities are considered in the Love-Kirchhoff hypothesis sense. The formulations are compa...
متن کاملBending Solution for Simply Supported Annular Plates Using the Indirect Trefftz Boundary Method
This paper presents the bending analysis of annular plates by the indirect Trefftz boundary approach. The formulation for thin and thick plates is based on the Kirchhoff plate theory and the Reissner plate theory. The governing equations are therefore a fourth-order boundary value problem and a sixth-order boundary value problem, respectively. The Trefftz method employs the complete set of solu...
متن کاملOn the Accuracy of Reissner–mindlin Plate Model for Stress Boundary Conditions
For a plate subject to stress boundary condition, the deformation determined by the Reissner–Mindlin plate bending model could be bending dominated, transverse shear dominated, or neither (intermediate), depending on the load. We show that the Reissner–Mindlin model has a wider range of applicability than the Kirchhoff–Love model, but it does not always converge to the elasticity theory. In the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 39 شماره
صفحات -
تاریخ انتشار 2008